10.

MATH 245 F16, Exam 2 Solutions

Carefully define the following terms: Proof by Contradiction theorem, Uniqueness Proof theorem, proof by strong
induction, Set S is well-ordered by <.

The Proof by Contradiction theorem says that for propositions p, g, if p A —q is false, then p — ¢ is true. The
Uniqueness Proof theorem says that if for all 2,y in domain D, P(z) A P(y) — « = y, then predicate P holds for at
most one z in the domain. To prove the proposition Yz € N, P(z) by strong induction, we need to prove that P(1)
is true (base case), and that for any k € N, that P(1) A P(2) A--- A P(k) — P(k+1). (inductive case). Set S is
well-ordered by < if every subset of S contains an element that is minimal with respect to <.

Carefully define the following terms: recurrence, a, = ©(b,), S =T (for sets S,T), SUT (for sets S, T).

A recurrence is a sequence of numbers, all but finitely many of whose terms are defined in terms of its previous
terms. a,, = ©(b,) means that a, = O(b,) A an, = Q(b,). S =T if the sets S, T contain exactly the same elements.
SUT istheset {zx:x e SVveeT}.

Let n € Z. Prove that w e Z.

We apply the division algorithm to n,2 to get ¢,r € Z with n = 2¢ + r and 0 < r < 2. The proof continues in
two cases. If r = 0 then % = (n+ 1)% = (n+1)(¢ —1) € Z. If instead r = 1 then W =
(n—2)2 1t = (n —2)(¢ + 1) € Z.

Use mathematical induction to prove that Vn € Z with n > 3, 2™ > 5.
Base case: n = 3. 2" =8 > 5, done.

Inductive case: Let n € Z with n > 3, and assume that 2" > 5. Multiply both sides by 2 to get 2"T1 = 2.2" >
2-5=10> 5. Hence 2"*! > 5.

Suppose that an algorithm has runtime specified by the recurrence relation T, = n'/2T), /2 + 2. Determine what,
if anything, the Master Theorem tells us.

Applying the Master Theorem, we find a = n'/2, b =2, ¢,, = 2. Since a is not a constant, then the Master Theorem
does not apply. It tells us nothing.

Let S, T be sets with SNT = S. Prove that S C T.

Let x € S. Since SNT =S, S and S NT have the same elements; in particular, x € SNT. Hence x € SAxz € T.
By simplification, € T'. This proves that S C T.

Let S be a set. Prove that S\ 0 =S.

Let z € S\ (. Then z € S Az ¢ ). By simplification, x € S. This proves that S\ 0 C S.
Now, let z € S. Also, = ¢ (), since () contains no elements. Hence, by conjunction, z € S Az ¢ (). Thus x € S\ (.
This proves that S C S\ T.

Let € R. Prove that 2|z| < [2z] < 2|z| + 1.

Since x > |x], we have 2z > x + |[z|. By Theorems 5.16 and 5.17, we have [2z| > |z + |z|] = |z] + |z] = 2|z].
This proves the first inequality.

Since x < |z] + 1, we have 2z < x + |z] + 1. By Theorems 5.16 and 5.17, we have |2z| < |z + |z| + 1] =
x| + |z] + 1 =2]z] + 1. This proves the second inequality.

Let z € R with > —1. Prove that ¥n € Ng, (1 +2)” > 1 + nz.

We use (shifted) induction on n. Base case: n =0. (1+2)° =1 > 1+ 0z, as desired.

Inductive case: Let n € Ng with (1 4+ x)™ > 1 + nz. We multiply both sides by (1 + x); since this is positive the
inequality is preserved. The result is (1+2)"*! = (14+2)(1+2)" > (1+2)(1+nz) = l+nr+z+nz? > 1+nz+x =
1+ (n+1)z.

Prove that 3™ # O(2").

We use proof by contradiction. Suppose that 3" = O(2"). Then there are nyp € N and M € R such that for all
n > ng, [3"] < M|2"|. Set m = logs, M, and take some n > max{ng,m}. Since n > ng, we have 3" < M2",
which rearranges to (3/2)" < M. But also, since (3/2)* is an increasing function of z, we have (3/2)" > (3/2)™ =
(3/2)'83/2M — M. This is a contradiction.



