
MATH 245 F16, Exam 2 Solutions

1. Carefully define the following terms: Proof by Contradiction theorem, Uniqueness Proof theorem, proof by strong
induction, Set S is well-ordered by <.

The Proof by Contradiction theorem says that for propositions p, q, if p ∧ ¬q is false, then p → q is true. The
Uniqueness Proof theorem says that if for all x, y in domain D, P (x)∧P (y)→ x = y, then predicate P holds for at
most one x in the domain. To prove the proposition ∀x ∈ N, P (x) by strong induction, we need to prove that P (1)
is true (base case), and that for any k ∈ N, that P (1) ∧ P (2) ∧ · · · ∧ P (k) → P (k + 1). (inductive case). Set S is
well-ordered by < if every subset of S contains an element that is minimal with respect to <.

2. Carefully define the following terms: recurrence, an = Θ(bn), S = T (for sets S, T ), S ∪ T (for sets S, T ).

A recurrence is a sequence of numbers, all but finitely many of whose terms are defined in terms of its previous
terms. an = Θ(bn) means that an = O(bn) ∧ an = Ω(bn). S = T if the sets S, T contain exactly the same elements.
S ∪ T is the set {x : x ∈ S ∨ x ∈ T}.

3. Let n ∈ Z. Prove that (n+1)(n−2)
2 ∈ Z.

We apply the division algorithm to n, 2 to get q, r ∈ Z with n = 2q + r and 0 ≤ r < 2. The proof continues in

two cases. If r = 0 then (n+1)(n−2)
2 = (n + 1) 2q+0−2

2 = (n + 1)(q − 1) ∈ Z. If instead r = 1 then (n+1)(n−2)
2 =

(n− 2) 2q+1+1
2 = (n− 2)(q + 1) ∈ Z.

4. Use mathematical induction to prove that ∀n ∈ Z with n ≥ 3, 2n > 5.

Base case: n = 3. 2n = 8 > 5, done.
Inductive case: Let n ∈ Z with n ≥ 3, and assume that 2n > 5. Multiply both sides by 2 to get 2n+1 = 2 · 2n >
2 · 5 = 10 > 5. Hence 2n+1 > 5.

5. Suppose that an algorithm has runtime specified by the recurrence relation Tn = n1/2Tn/2 + 2. Determine what,
if anything, the Master Theorem tells us.

Applying the Master Theorem, we find a = n1/2, b = 2, cn = 2. Since a is not a constant, then the Master Theorem
does not apply. It tells us nothing.

6. Let S, T be sets with S ∩ T = S. Prove that S ⊆ T .

Let x ∈ S. Since S ∩ T = S, S and S ∩ T have the same elements; in particular, x ∈ S ∩ T . Hence x ∈ S ∧ x ∈ T .
By simplification, x ∈ T . This proves that S ⊆ T .

7. Let S be a set. Prove that S \ ∅ = S.

Let x ∈ S \ ∅. Then x ∈ S ∧ x /∈ ∅. By simplification, x ∈ S. This proves that S \ ∅ ⊆ S.
Now, let x ∈ S. Also, x /∈ ∅, since ∅ contains no elements. Hence, by conjunction, x ∈ S ∧ x /∈ ∅. Thus x ∈ S \ ∅.
This proves that S ⊆ S \ T .

8. Let x ∈ R. Prove that 2bxc ≤ b2xc ≤ 2bxc+ 1.

Since x ≥ bxc, we have 2x ≥ x + bxc. By Theorems 5.16 and 5.17, we have b2xc ≥ bx + bxcc = bxc + bxc = 2bxc.
This proves the first inequality.
Since x < bxc + 1, we have 2x < x + bxc + 1. By Theorems 5.16 and 5.17, we have b2xc ≤ bx + bxc + 1c =
bxc+ bxc+ 1 = 2bxc+ 1. This proves the second inequality.

9. Let x ∈ R with x > −1. Prove that ∀n ∈ N0, (1 + x)n ≥ 1 + nx.

We use (shifted) induction on n. Base case: n = 0. (1 + x)0 = 1 ≥ 1 + 0x, as desired.
Inductive case: Let n ∈ N0 with (1 + x)n ≥ 1 + nx. We multiply both sides by (1 + x); since this is positive the
inequality is preserved. The result is (1+x)n+1 = (1+x)(1+x)n ≥ (1+x)(1+nx) = 1+nx+x+nx2 ≥ 1+nx+x =
1 + (n + 1)x.

10. Prove that 3n 6= O(2n).

We use proof by contradiction. Suppose that 3n = O(2n). Then there are n0 ∈ N and M ∈ R such that for all
n ≥ n0, |3n| ≤ M |2n|. Set m = log3/2 M , and take some n > max{n0,m}. Since n > n0, we have 3n ≤ M2n,
which rearranges to (3/2)n ≤M . But also, since (3/2)x is an increasing function of x, we have (3/2)n > (3/2)m =
(3/2)log3/2 M = M . This is a contradiction.


